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Fig. 2. Fields and currents at y = T for a chiral microstrip solved using
ten .J=modes and ten .lXmodes.
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Fig. 3. Normalized guide wavelength (Ag/AO) versus frequency for the
fundamental mode of chiral and achiral microstrip lines, for a range of
chiral parameters in Siemens.

1=,0=1, since the microstrip current can only be found to within
a constant. In the figures the real part of the current and fields
is shown as a solid line, and the imaginary part as a dashed line.

Fig. 2 shows the electric fields and currents at the interface
y = T for a MM solution using ten longitudinal and ten trans-
verse basis functions. The left-hand graphs show that the fields
satisfi the boundary condition of zero tangential electric field on
the microstrip line. The corresponding currents are shown in the
right-hand graphs. The even transverse current component,
which occurs solely because of the chirality, is significantly
larger than the odd transverse current component.

The dispersion curve shown in Fig. 3 shows the normalized
guide wavelength (Ag\AO) for the fundamental mode of a chiral
microstrip line, for a range of chiral parameters. The case &C= O
corresponds to an achiral line. Fig. 3 shows that the propagation

constant is not significantly affected unless the chiral parameter
is a significant percentage of the maximum value set in [15] of

t c,max= ~~, which in this case is 0.0053 S.
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Time.Domain Scattering Parameters of an
Exponential Transmission Line

Ching-Wen Hsue

Abstract –-The scattering parameters of an exponential line are sitod-
ied in detail bothi in frequency and time domains. By taking the causality
condition into consideration, we cast the time domain scattering param-
eters in a rapid-convergence power series. Each term of the power series
represents a signal component generated by the exponential line when
the signal travels a round trip. *“ ---
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I. INTRODUCHON

Time-domain transmission line analysis has been a subject of
interest in recent microwave studies [1]–[12]. Due to its poten-
tial applications in high-speed circuit designs, most of the inves-
tigations [1]–[8] focused on the formulation of electromagnetic
waves along the transmission media in terms of time and space
variables. Some [9]–[12] examined the dispersion effect of 10SSY
or dispersive transmission media on the pulse signal degrada-
tion. For the analysis of linear circuits, we use frequency-domain
scattering parameters to evaluate the circuit performance. The
time-domain responses of such circuits are obtained by taking
the inverse Laplace transforms of the corresponding frequency-
domain functions. However, when transmission lines are termi-
nated with nonlinear loads, the above technique is no longer an
adequate approach [2], [3]. A more appropriate approach is to
characterize the transmission line by a set of time-domain scat-
tering parameters, so that the interaction between the transmis-
sion line and nonlinear loads can be expressed by the corre-
sponding time-domain convolution integral. To investigate the
time-domain responses involving signal lines and nonlinear loads,
it is therefore pertinent to study time-domain scattering parame-
ters of the transmission lines.

Frequency- and time-domain scattering parameters of a uni-
form signal line had been studied extensively in the past [1]-[12].
To the author’s knowledge, no literature had treated the time-
domain scattering parameters of an exponential line analytically.
The work reported here is partly motivated by our desire to
study the interaction of nonuniform lines with nonlinear loads.
Here we limit our attention to the time-domain characteristics
of an exponential line. We first present the frequency-domain
scattering parameters of a lossless, exponential transmission
line. The time-domain scattering parameters are then obtained
by taking the inverse Laplace’s transform of their corresponding
functions in the frequency domain.

II. SCATTERINGPARAMETERSIN FREQUENCY DOMAIN

We show in Fig. 1 that a nonuniform transmission line can be
described as a set of scattering parameters which relate two
reflected waves and two incident waves:

bl(s) = ~ll(s)al(s)+ ilz(~)%(~)) (1)

b2(s)=i21(s)a1( s)+j22(s)a2(s), (2)

where al(s), bl(s), a2(s), b2(s) are th~ incident and reflected
waves for ports 1 and 2 respectively, S,,(s) (i, j = 1,2) are the
scattering parameters, and s represents the frequency. Specifi-
cally, ~11,~zz are treated as scattering reflection coefficients,
while ~lz, ~zl are regarded as the scattering transmission coeffi-
cients. The nonuniform line extends over a distance 1 and is
terminated with two uniform reference lines at both ends. For
convenience, we choose Z,ef,~ and Z,ef,~ as the source (left) and
load (right) end reference impedances, which are equal to the
characteristic impedances of the exponential line at the left and
right sides, respectively.

To evaluate the scattering parameters of the exponential line,
we consider a lossless, nonuniform line having a characteristic
impedance as follows,

Z(x) = Z~eY’, (3)

a2

Fig. 1. Scattering parameters representation of a nonuniform trans-
mission line.

with

ln(ZL/Z~)
y=

1’
(4)

where Z~ and Z~ are the characteristic impedances at the left
(source) and right (load) of the exponential line, respectively.
The exponential line extends from x = Oto x =1. The frequency
domain voltage and current along an exponential line can be
expressed as [13]:

~(x) = A1~Yx/2e–JK’ + A2eYX/2eJKX (5)

and

K+jy/2 K–jy/2
I(x) =Al ~L e-’X/2e-J”x– A2 ~L e-’x/2e’KX,

0 0

(6)

respectively, where w is the angular frequency and

‘=(02Lc-:)”2(7a)

L= LOeyx, (7b)

C = COe-Yx. (7C]

Note that LO and CO represent the inductance and capacitance
per unit length at the input end of the nonuniform line, i.e.,
Z~ = (LO / CO)1i2. The first term of right hand side in (5) de-
notes a forward ( + x) traveling wave while the second term
designates a backward (– x) traveling wave. Al and Az in (5)
and (6) are determined by the boundary conditions. At the load
end, we have

v(x)
=ZL.

I(x) ~=~
(8)

Upon substitution of (5), (6), into (8), we obtain the relation
between A ~ and A ~. At the input end, we get the input
impedance Zln

v(x)
= Zin

z(x) *=rJ
(9)

The incident wave V,nc is related to A ~ and A z in the form of

A1+A2
~nc,= —

l+p ‘
(lo)

where p is the reflection coefficient at the input end, which is
given by

Zin– z~
p=zin+z~”

(11)

The transmission coefficient at the load end is defined as the
ratio of the transmitted wave to the incident wave. If we divide
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(5) by (10), after some algebraic manipulations, we get the transmission coefficient g

()
1/2

2(1 – ~2/dk~)l/2e-j(k~-y2/4)1/z~
~--- :

mc. s [1+(1– -y2/4k~)1’2] + e-J~k~-y21~/21 [ -1+ (1- y2/4k;)1’2] ‘
(12)

where the propagation constant k. is

kO = 0( LOCO)l’2. (13)

In the above evaluation for the transmission coefficient ~, we assume the exponential line is terminated with a matching
transmission line of characteristic impedance Z~. For suc~ a situation, the reflected wave vanishes, i.e., az(s) = O in (2). Equation
(2) reveals that the scattering transmission parameter $1 is the ratio of b2,(f) to al(s), which are equal to V.=1 and V&.,
respectively. This, in turn, indicates that ~ is equivalent to the scattering parameter ~zl(s). If we substitute s = jo, u = (LOCO)- 1/2
into (12) and remove the normalized impedance factor (ZL /Zs)l’2, we get the scattering transmkshn parameter:

2(s2 + ##/4) V2e –(~z+y’~,lz/’l)V~l/c

~zl(s) =

[(S + S2 + ‘y2~2/4)1’2] + [— S +(s2 + y2u2\4)11’2] e–2(Sa+~2[]1/4J1’21/”“

The reciprocity principle indicates that

i12(s) = izl(s).

(14)

(15)

Substituting (5)–(9) into (11), we get the expression for the reflection coefficient p at the input end, which is equal to the scattering
reflection coefficient ~ll(s):

1 _ ~-z(s’+yv /4)’/’//.

ill(s) =p=;

[(
s + S2 + y2U2\4)]’2] + [ _s +(s2 + ~2U2/d)l/2] e–2(S2+Y2U2/4)1 /21/O”

Equation (16) indicates that ill(s) is an odd function.of y. If we
invert the impedance ratio of ZL to 2s, as can be inferred from
(~), y changes the sign. Therefore, the scattering parameter
S22(s) at the load end is

izz(s) = – $l(s). (17)

It is pertinent to point out that the above scattering transmission
coefficients ~,l(s) (i #j) are valid for the power evaluation. The
scattering transmission coefficients should accompany the ap-
propriate normalized impedance factors when they are used for
the transient voltage calculation.

III. TIME DOMAINSCATTERINGPARAMETERS

The time domain scattering parameters Sjl(f) are the inverse
Laplace’s transforms of the frequency domam scattering param-
eters. This gives

szJ(t)= L-l[itj(s)], (i,j=l,2) (18)

where L – 1 represents the inverse Laplace transforms. To per-
form the inverse Laplace transforms, we first rearrange the

(16)

scattering parameter ~zl(s) and expand it into a power series,

2( S2 + y2U2/4)1’2 e_(,2+y2t,2/4)1/21/,,

iz,(s) =: —
s +-(s2 + @12/4)1’2

1

~+ – S +(S2 + y2V2/4)1’ze_2($Z+y2u2/4)1/21/L
s+(s2+y2&4)1’2

(19a)

2( S2 + y2v2/4)1’2 e_(,2+72”2,4)1/21/”
=: —

si-(s2+72u2/4)1’2

y2v2/2(s2 + y2v2/4)
—

[(s2 + #&4)1’2] [s+(s2+ 7%2/4) 1’2]3’

. ~ -3(#+y2U2/4)1/21/U + . . . . (!.9b)

Although :~21(s)consists of an infinite number of terms, cailsal-
ity condition makes it physically sound to consider the first few
terms of the power series expansion [1]. We may expand the
same function in terms of a finite sum with a remainder instead
of as an infinite series. As will be clear later. the high-order
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terms represent the signal contribution which occurs in lagged
time intervals. For many practical applications, we use scattering
parameters to analyze the transient behaviors of transmission
line systems. The transient responses will eventually reach the
steady state value which is determined by the source and load
resistances but not by the characteristic impedances of the
nonuniform transmission line [6]. The high-order terms have no
or less contribution to the first arriving wave, transition ripple
and the steady state value. Therefore, when the time domain
scattering parameters are used to evaluate the transient re-
sponses of transmission systems, the high-order terms can be
neglected. For the present consideration, we focus on the first
two terms of ~zl( s). Of course, if it is necessary, we can take
more terms into consideration. The inverse Laplace transforms
of $Zl(s) can be obtained with the aid of tabulated transforms
[14]. We introduce

L-l{aPr-lR-6e-b~}

(

o O<t<b
——

(i -b)li’p(t +b)-1/2PJP(ay) t > b
(20)

where

~=(~~+az)l” (21a)

R=s+r (21b)

),
y=(tz_b? ‘iz (21C)

and .TD(ay) represents the Bessel function of the first kind, ~
order. Furthermore, the transform of differentiation gives [14]:

~,1

{)

~n-1

L @(t) =S’’~(S) –S’’-’f(t)+)– . . . –Ff(O+),

(22)

where L designates the Laplace transform and F(s) is the
transform of ~(t). In order to simplify the expression, we define
the propagation delay over the nonuniform line as

~=1. (23)u
Substituting (20)–(23) into (19b), we get the time domain scat-
tering parameter S21(t),

~2u2 d2

s21(t)= 2:[f J+y[f, ]-y=[f2]-+[f2],

(24)

where

f,= ;(t -l)’”(t +1)-1/2.T,(;[t’-l]’’2)u_,( 1),),

f’= & -3)3’2(~ +3)-’’2J3(; [2)U)U.U

and u _,( t – 1) is the unit step function commencing at

(25)

-3),

(26)

t=l.
Note that f ~ has a contribution to S21(t) for t> l;while f z

yields contribution to Szl(t) for t>3. S21(t) has been normal-
ized with respect to the propagation delay time across the
nonuniform line. The first two terms in (24) are the inverse
transforms of the first term in (19b), whereas the remainders in

(24) represent the inverse transforms of the second term in

1.0 I I I I
A

Is(t–1)

0.5 -

Szl(t)
q/lzs=4

o -

-0.5 –

-Lo~
1 2 3 4 5

time _

Fig. 2. Time-domain scattering transmission coefficient S21(t) of an
exponential line.

,. I I I I
u

-0.1

-0.2 [
o

I I I
1 2 3 4

time _

Fig. 3. Time-domain scattering reflection coefficient Sll(t) of an expo-
nential line.

(19b). Fig. 2 shows the time domain scattering transmission
coefficient S21(t ) for two impedance ratios ZL /2s = 4,9. ~(t–
1)represents the impulse delta function commencing at t= 1
and should be included for both cases. The steady state value of
S21(t) is zero, which can be obtained from (14). Note that Fig. 2
designates the impulse responses at the load end when the input
is excited by an impulse delta function.

By expanding $Il(s) into a power series, we obtain

ill(s) =
yu/2 yu(s2+y%l~/4)1’2

—

s +(s’ + y%12/4)1’2 [s+(s’+ y’u2\4)1’2]2

. ~ –2(,T2+Y%Z /4)1/2 i/u (27)

We introduce [14]:

L-l{R-.}=n~-~t-l~fi(at), (28)

where R is defined in (21b). The inverse transform of ~ll(s) is

sll(t)= [f31– Yu$[f41–y[f41> (29)
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()f3=t-’J1 :t u-,(f)> (30)

f4=*(t-2)(t +2)-1 .L(~[t’ -4]1’2)U-1(t -2). (3I)

When t<2, f3 represents the reflected wave at the input end
before the first reflection returns. Fig. 3 shows the time domain
scattering reflection parameter Sll(t) for two impedance ratios
Z~ /Z~ =4, 9. Note that Sll(t) is normalized with respect to a
factor ln(ZL /Z~). The drop of Sll(t) at t= 2 is 0.25 for both
impedance ratios. Equations (24) and (29) reveal that S21(t) is
an even function of y while Sll(t ) is an odd function of y.

IV. CONCLUSION

Exact solutions are found for both the frequency domain and
time domain scattering parameters of an exponential transmis-
sion line. The time domain scattering parameters of an exponen-
tial line lay the foundation for the studies of interaction between
nonuniform lines anti linear\ nonlinear loads, and pulse wave-
form alteration in the time domain.
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Analysis of 3-D Microwave Resonators using
Covariant-Projection Elements

J. P. Webb and Ruth Miniowitz

Abstract -–Thmee-dishensional microwave resonators of arbitrary shape
can be analyzed with the finite element method using covariant-projec-
tion elements, curvilinear bricks which impose only tangential field
continuity. The method’ prodnces no spnrions modes, and work!s well
even when sharp metal edges are present. The matrices involved, though
large, are sparsq an appropriate sparse eigenvalue algorithm allows the
method to mm in modest amounts of memory. Results are presented for
a number of test cases, including a rectangular microstrip resonator.

I. INTRODUCTION

ELECTRDMAGNETIC resonance is important in the oper-
ation of many microwave devices, and its prediction has

been the subject of a large number of papers. For structures of
arbitrary shape, numerical methods are necessary. The finite
element method has long been used for finding the modes of
uniform waveguides [1], and has been proposed as a technique
for 3-D cavity resonance [2], [3]. However, several obstacles have
impeded the application of 3-D elements. The problem of
spurious modes has, rightly, received the most attention, and the
last few years have seen the publication of a variety of solulions,
both in 2-D ;and in 3-D [2]-[7]. However, a second difficulty
which arises commonly in microwave devices is that of s,harp
conducting edges and corners. To find resonances, it is usually
necessary to s,olve for the electric or magnetic field directly, and
these fields are, in general, infinite at sharp edges. The corltinu-
OUS,piecewise-polynomial variations provided by conventional
finite elements do not adequately represent such singularities,
and lead to poor results [81, [9].

One answer is to add to the polynomials special trial functions
capable of modeling the singularity [8], A different, and in many
ways more elegant, solution is provided by the work of Crc~wley
et al. [1O!I,[11] on new finite elements capable of ayoiding
spurious modes. These are called covariant-projection elements.
Covariant.projection elements only enforce the tangential conti-
nuity of the vector field, leaving the normal component at
interfaces free to adopt its natural value. This reduced continu-
ity appears to allow a better modeling of singularities. A version
of the elements was tried in 2-D for the analysis of uniform
waveguides with sharp edges, with excellent results [12]. Crc~wley
et al. demonstrated the validity of the brick element for several
3-D cavity prcjblems, but none had sharp metal edges. It i:s the
purpose of this paper to show that covariant-projection ele-
ments, combined with a”suitable sparse-matrix solution mf the
algebraic lproblern, is an effective method for 3-D cavity reso-
nance, even when singularities are present.
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